The Road Coloring and Cerny Conjecture
نویسنده
چکیده
A synchronizing word of a deterministic automaton is a word in the alphabet of colors (considered as letters) of its edges that maps the automaton to a single state. A coloring of edges of a directed graph is synchronizing if the coloring turns the graph into a deterministic finite automaton possessing a synchronizing word. The road coloring problem is the problem of synchronizing coloring of a directed finite strongly connected graph with constant outdegree of all its vertices if the greatest common divisor of lengths of all its cycles is one. The problem was posed by Adler, Goodwyn and Weiss over 30 years ago and evoked noticeable interest among the specialists in the theory of graphs, deterministic automata and symbolic dynamics. The positive solution of the road coloring problem is presented. Some consequences on the length of the synchronizing word are discussed.
منابع مشابه
Černý conjecture for edge-colored digraphs with few junctions
In this paper we consider the Cerny conjecture in terminology of colored digraphs corresponding to finite automata. We define a class of colored digraphs having a relatively small number of junctions between paths determined by different colors, and prove that digraphs in this class satisfy the Cerny conjecture. We argue that this yields not only a new class of automata for which the Cerny conj...
متن کامل-λ coloring of graphs and Conjecture Δ ^ 2
For a given graph G, the square of G, denoted by G2, is a graph with the vertex set V(G) such that two vertices are adjacent if and only if the distance of these vertices in G is at most two. A graph G is called squared if there exists some graph H such that G= H2. A function f:V(G) {0,1,2…, k} is called a coloring of G if for every pair of vertices x,yV(G) with d(x,y)=1 we have |f(x)-f(y)|2 an...
متن کاملA Note on the Road-Coloring Conjecture
Some results relating to the road-coloring conjecture of Alder, Goodwyn, and Weiss, which give rise to an O(n2) algorithm to determine whether or not a given edge-coloring of a graph is a road-coloring, are noted. Probabilistic analysis is then used to show that, if the outdegree of every edge in an n-vertex digraph is δ = ω(logn), a road-coloring for the graph exists. An equivalent re-statemen...
متن کاملA Min-Max theorem about the Road Coloring Conjecture
The Road Coloring Conjecture is an old and classical conjecture posed in Adler and Weiss (1970); Adler et al. (1977). Let G be a strongly connected digraph with uniform out-degree 2. The Road Coloring Conjecture states that, under a natural (necessary) condition that G is “aperiodic”, the edges of G can be colored red and blue such that “universal driving directions” can be given for each verte...
متن کاملSynchronization and Stability of Finite Automata
Let G = (V, E) be a strongly connected and aperiodic directed graph of uniform out-degree k. A deterministic finite automaton is obtained if the edges are colored with k colors in such a way that each vertex has one edge of each color leaving it. The automaton is called synchronized if there exists an input word that maps all vertices into the same fixed vertex. The road coloring conjecture ask...
متن کامل